Dasar-Dasar Pneumatik

GambarPneumatik merupakan teori atau pengetahuan tentang udara yang bergerak, keadaan-keadaan keseimbangan udara dan syarat-syarat keseimbangan. Perkataan pneumatik berasal bahasa Yunani “ pneuma “ yang berarti “napas” atau “udara”. Jadi pneumatik berarti terisi udara atau digerakkan oleh udara mampat. Pneumatik merupakan cabang teori aliran atau mekanika fluida dan tidak hanya meliputi penelitian aliran-aliran udara melalui suatu sistem saluran, yang terdiri atas pipa-pipa, selang-selang, gawai dan sebagainya, tetapi juga aksi dan penggunaan udara mampat.

Pneumatik menggunakan hukum-hukum aeromekanika, yang menentukan keadaan keseimbangan gas dan uap (khususnya udara atmosfir) dengan adanya gaya-gaya luar (aerostatika) dan teori aliran (aerodinamika). Pneumatik dalam pelaksanaan teknik udara mampat dalam industri merupakan ilmu pengetahuan dari semua proses mekanik dimana udara memindahkan suatu gaya atau gerakan. Jadi pneumatik meliputi semua komponen mesin atau peralatan, dalam mana terjadi proses-proses pneumatik. Dalam bidang kejuruan teknik pneumatik dalam pengertian yang lebih sempit lagi adalah teknik udara mampat (udara bertekanan).

Gambar

Komponen-komponen Pneumatik

Komponen pneumatik beroperasi pada tekanan 8 s.d. 10 bar, tetapi dalam praktik dianjurkan beroperasi pada tekanan 5 s.d. 6 bar untuk penggunaan yang ekonomis.
Beberapa bidang aplikasi di industri yang menggunakan media pneumatik dalam hal penangan material adalah sebagai berikut :
a. Pencekaman benda kerja
b. Penggeseran benda kerja
c. Pengaturan posisi benda kerja
d. Pengaturan arah benda kerja

Penerapan pneumatik secara umum :
a. Pengemasan (packaging)
b. Pemakanan (feeding)
c. Pengukuran (metering)
d. Pengaturan buka dan tutup (door or chute control)
e. Pemindahan material (transfer of materials)
f. Pemutaran dan pembalikan benda kerja (turning and inverting of parts)
g. Pemilahan bahan (sorting of parts)
h. Penyusunan benda kerja (stacking of components)
i. Pencetakan benda kerja (stamping and embosing of components)

Susunan sistem pneumatik adalah sebagai berikut :
a. Catu daya (energi supply)
b. Elemen masukan (sensors)
c. Elemen pengolah (processors)
d. Elemen kerja (actuators)

1.1 Alasan Pemakaian Pneumatik
Persaingan antara peralatan pneumatik dengan peralatan mekanik, hidrolik atau elektrik makin menjadi besar. Dalam penggunaannya sistem pneumatik diutamakan karena beberapa hal yaitu :
a. paling banyak dipertimbangkan untuk beberapa mekanisasi,
b. dapat bertahan lebih baik terhadap keadaan-keadaan tertentu
Sering kali suatu proses tertentu dengan cara pneumatik, berjalan lebih rapi (efisien) dibandingkan dengan cara lainnya. Contoh :
1). Palu-palu bor dan keling pneumatik adalah jauh lebih baik dibandingkan dengan perkakas-perkakas elektrik serupa karena lebih ringan, lebih ada kepastian kerja dan lebih sederhana dalam pelayanan.
2). Pesawat-pesawat pneumatik telah mengambil suatu kedudukan monopoli yang penting pada :
a). rem-rem udara bertekanan untuk mobil angkutan dan gerbong-gerbong kereta api, alat-alat angkat dan alat-alat angkut.
b). pistol-pistol ( alat cat semprot, mesin-mesin peniup kaca, berbagai jenis penyejukan udara, kepala-kepala asah kecepatan tinggi ).

Udara bertekanan memiliki banyak sekali keuntungan, tetapi dengan sendirinya juga terdapat segi-segi yang merugikan atau lebih baik pembatasan-pembatasan pada penggunaannya. Hal-hal yang menguntungkan dari pneumatik pada mekanisasi yang sesuai dengan tujuan sudah diakui oleh cabang-cabang industri yang lebih banyak lagi. Pneumatik mulai digunakan untuk pengendalian maupun penggerakan mesin-mesin dan alat-alat.

1.2 Keuntungan Pemakaian Pneumatik
a. Merupakan media/fluida kerja yang mudah didapat dan mudah diangkut :
1). Udara dimana saja tersedia dalam jumlah yang tak terhingga.
2). Saluran-saluran balik tidak diperlukan karena udara bekas dapat dibuang bebas ke atmosfir, sistem elektrik dan hidrolik memerlukan saluran balik.
3). Udara bertekanan dapat diangkut dengan mudah melalui saluran-saluran dengan jarak yang besar, jadi pembuangan udara bertekanan dapat dipusatkan dan menggunakan saluran melingkar semua pemakai dalam satu perusahaan dapat dilayani udara bertekanan dengan tekanan tetap dan sama besarnya. Melalui saluran-saluran cabang dan pipa-pipa selang, energi udara bertekanan dapat disediakan dimana saja dalam perusahaan.

b. Dapat disimpan dengan mudah :
1). Sumber udara bertekanan ( kompresor ) hanya menyerahkan udara bertekanan kalau udara bertekanan ini memang digunakan. Jadi kompresor tidak perlu bekerja seperti halnya pada pompa peralatan hidrolik.
2). Pengangkutan ke dan penyimpanan dalam tangki-tangki penampung juga dimungkinkan.
3). Suatu daur kerja yang telah dimulai selalu dapat diselesaikan, demikian pula kalau penyediaan listrik tiba-tiba dihentikan.

c. Bersih dan kering :
1). Udara bertekanan adalah bersih. Kalau ada kebocoran pada saluran pipa, benda-benda kerja maupun bahan-bahan disekelilingnya tidak akan menjadi kotor.
2). Udara bertekanan adalah kering. Bila terdapat kerusakan pipa-pipa tidak akan ada pengotoran-pengotoran, bintik minyak dansebagainya.
3). Dalam industri pangan , kayu , kulit dan tenun serta pada mesin-mesin pengepakan hal yang memang penting sekali adalah bahwa peralatan tetap bersih selama bekerja.
Sistem pneumatik yang bocor bekerja merugikan dilihat dari sudut ekonomis, tetapi dalam keadaan darurat pekerjaan tetap dapat berlangsung. Tidak terdapat minyak bocoran yang mengganggu seperti pada sistem hidrolik.

d. Tidak peka terhadap suhu
1). Udara bersih ( tanpa uap air ) dapat digunakan sepenuhnya pada suhu-suhu yang tinggi atau pada nilai-nilai yang rendah, jauh di bawah titik beku ( masing-masing panas atau dingin ).
2). Udara bertekanan juga dapat digunakan pada tempat-tempat yang sangat panas, misalnya untuk pelayanan tempa tekan, pintu-pintu dapur pijar, dapur pengerasan atau dapur lumer.
3). Peralatan-peralatan atau saluran-saluran pipa dapat digunakan secara aman dalam lingkungan yang panas sekali, misalnya pada industri-industri baja atau bengkel-bengkel tuang (cor).

e. Aman terhadap kebakaran dan ledakan
1). Keamanan kerja serta produksi besar dari udara bertekanan tidak mengandung bahaya kebakaran maupun ledakan.
2). Dalam ruang-ruang dengan resiko timbulnya kebakaran atau ledakan atau gas-gas yang dapat meledak dapat dibebaskan, alat-alat pneumatik dapat digunakan tanpa dibutuhkan pengamanan yang mahal dan luas. Dalam ruang seperti itu kendali elektrik dalam banyak hal tidak diinginkan.

f. Tidak diperlukan pendinginan fluida kerja
1). Pembawa energi (udara bertekanan) tidak perlu diganti sehingga untuk ini tidak dibutuhkan biaya. Minyak setidak-tidaknya harus diganti setelah 100 sampai 125 jam kerja.

g. Rasional (menguntungkan)
1). Pneumatik adalah 40 sampai 50 kali lebih murah daripada tenaga otot. Hal ini sangat penting pada mekanisasi dan otomatisasi produksi.
2). Komponen-komponen untuk peralatan pneumatik tanpa pengecualian adalah lebih murah jika dibandingkan dengan komponen-komponen peralatan hidrolik.

h. Kesederhanaan (mudah pemeliharaan)
1). Karena konstruksi sederhana, peralatan-peralatan udara bertekanan hampir tidak peka gangguan.
2). Gerakan-gerakan lurus dilaksanakan secara sederhana tanpa komponen mekanik, seperti tuas-tuas, eksentrik, cakera bubungan, pegas, poros sekerup dan roda gigi.
3). Konstruksinya yang sederhana menyebabkan waktu montase (pemasangan) menjadi singkat, kerusakan-kerusakan seringkali dapat direparasi sendiri, yaitu oleh ahli teknik, montir atau operator setempat.
4). Komponen-komponennya dengan mudah dapat dipasang dan setelah dibuka dapat digunakan kembali untuk penggunaan-penggunaan lainnya.

i. Sifat dapat bergerak
1). Selang-selang elastik memberi kebebasan pindah yang besar sekali dari komponen pneumatik ini.

j. Aman
1). Sama sekali tidak ada bahaya dalam hubungan penggunaan pneumatik, juga tidak jika digunakan dalam ruang-ruang lembab atau di udara luar. Pada alat-alat elektrik ada bahaya hubungan singkat.

k. Dapat dibebani lebih ( tahan pembebanan lebih )
Alat-alat udara bertekanan dan komponen-komponen berfungsi dapat ditahan sedemikian rupa hingga berhenti. Dengan cara ini komponen-komponen akan aman terhadap pembebanan lebih. Komponen-komponen ini juga dapat direm sampai keadaan berhenti tanpa kerugian.
1). Pada pembebanan lebih alat-alat udara bertekanan memang akan berhenti, tetapi tidak akan mengalami kerusakan. Alat-alat listrik terbakar pada pembebanan lebih.
2). Suatu jaringan udara bertekanan dapat diberi beban lebih tanpa rusak.
3). Silinder-silinder gaya tak peka pembebanan lebih dan dengan menggunakan katup-katup khusus maka kecepatan torak dapat disetel tanpa bertingkat.

l. Jaminan bekerja besar
Jaminan bekerja besar dapat diperoleh karena :
1). Peralatan serta komponen bangunannya sangat tahan aus.
2). Peralatan serta komponen pada suhu yang relatif tinggi dapat digunakan sepenuhnya dan tetap demikian.
3). Peralatan pada timbulnya naik turun suhu yang singkat tetap dapat berfungsi.
4). Kebocoran-kebocoran yang mungkin ada tidak mempengaruhi ketentuan bekerjanya suatu instalasi.

m. Biaya pemasangan murah
1). Mengembalikan udara bertekanan yang telah digunakan ke sumbernya (kompresor) tidak perlu dilakukan. Udara bekas dengan segera mengalir keluar ke atmosfir, sehingga tidak diperlukan saluran-saluran balik, hanya saluran masuk saja.
2). Suatu peralatan udara bertekanan dengan kapasitas yang tepat, dapat melayani semua pemakai dalam satu industri. Sebaliknya, pengendalian-pengendalian hidrolik memerlukan sumber energi untuk setiap instalasi tersendiri (motor dan pompa).

n. Pengawasan (kontrol)
1). Pengawasan tekanan kerja dan gaya-gaya atas komponen udara bertekanan yang berfungsi dengan mudah dapat dilaksanakan dengan pengukur-pengukur tekanan (manometer).

o. Fluida kerja cepat
1). Kecepatan-kecepatan udara yang sangat tinggi menjamin bekerjanya elemen-elemen pneumatik dengan cepat. Oleh sebab itu waktu menghidupkan adalah singkat dan perubahan energi menjadi kerja berjalan cepat.
2). Dengan udara mampat orang dapat melaksanakan jumlah perputaran yang tinggi ( Motor Udara ) dan kecepatan-kecepatan piston besar (silinder-silinder kerja ).
3). Udara bertekanan dapat mencapai kecepatan alir sampai 1000 m/min (dibandingkan dengan energi hidrolik sampai 180 m/min ).
4). Dalam silinder pneumatik kecepatan silinder dari 1 sampai 2 m/detik mungkin saja ( dalam pelaksanaan khusus malah sampai 15 m/detik ).
5). Kecepatan sinyal-sinyal kendali pada umumnya terletak antara 40 dan 70 m/detik (2400 sampai 4200 m/min)

p. Dapat diatur tanpa bertingkat
1). Dengan katup pengatur aliran, kecepatan dan gaya dapat diatur tanpa bertingkat mulai dari suatu nilai minimum (ditentukan oleh besarnya silinder) sampai maksimum (tergantung katup pengatur yang digunakan).
2). Tekanan udara dengan sederhana dan kalau dibutuhkan dalam keadaan sedang bekerja dapat disesuaikan dengan keadaan.
3). Beda perkakas rentang tenaga jepitnya dapat disetel dengan memvariasikan tekanan udara tanpa bertingkat dari 0 sampai 6 bar.
4). Tumpuan-tumpuan dapat disetel guna mengatur panjang langkah silinder kerja yang dapat disetel terus-menerus (panjang langkah ini dapat bervariasi sembarang antara kedua kedudukan akhirnya).
5). Perkakas-perkakas pneumatik yang berputar dapat diatur jumlah putaran dan momen putarnya tanpa bertingkat.

q. Ringan sekali
Berat alat-alat pneumatik jauh lebih kecil daripada mesin yang digerakkan elektrik dan perkakas-perkakas konstruksi elektrik (hal ini sangat penting pada perkakas tangan atau perkakas tumbuk). Perbandingan berat (dengan daya yang sama) antara :
• motor pneumatik : motor elektrik = 1 : 8 (sampai 10)
• motor pneumatik : motor frekuensi tinggi = 1 : 3 (sampai 4)

r. Kemungkinan penggunaan lagi (ulang)
Komponen-komponen pneumatik dapat digunakan lagi, misalnya kalau komponen-komponen ini tidak dibutuhkan lagi dalam mesin tua.
r. Konstruksi kokoh
Pada umumnya komponen pneumatik ini dikonstruksikan secara kompak dan kokoh, dan oleh karena itu hampir tidak peka terhadap gangguan dan tahan terhadap perlakuan-perlakuan kasar.

s. Fluida kerja murah
Pengangkut energi (udara) adalah gratis dan dapat diperoleh senantiasa dan dimana saja. Yang harus dipilih adalah suatu kompresor yang tepat untuk keperluan tertentu; jika seandainya kompresor yang dipilih tidak memenuhi syarat, maka segala keuntungan pneumatik tidak ada lagi.

1.3 Kerugian / terbatasnya Pneumatik
a. Ketermampatan (udara).
Udara dapat dimampatkan. Oleh sebab itu adalah tidak mungkin untuk mewujudkan kecepatan-kecepatan piston dan pengisian yang perlahan-lahan dan tetap, tergantung dari bebannya.
Pemecahan :
• kesulitan ini seringkali diberikan dengan mengikutsertakan elemen hidrolik dalam hubungan bersangkutan, tertama pada pengerjaan-pengerjaan cermat ( bor, bubut atau frais ) hal ini merupakan suatu alat bantu yang seringkali digunakan.

b. Gangguan Suara (Bising)
Udara yang ditiup ke luar menyebabkan kebisingan (desisan) mengalir ke luar, terutama dalam ruang-ruang kerja sangat mengganggu.
Pemecahan :
• dengan memberi peredam suara (silincer)

c. Kegerbakan (volatile)
Udara bertekanan sangat gerbak (volatile). Terutama dalam jaringan-jaringan udara bertekanan yang besar dan luas dapat terjadi kebocoran-kebocoran yang banyak, sehingga udara bertekanan mengalir keluar. Oleh karena itu pemakaian udara bertekanan dapat meningkat secara luar biasa dan karenanya harga pokok energi “berguna” sangat tinggi.
Pemecahan :
• dapat dilakukan dengan menggunakan perapat-perapat berkualitas tinggi.

d. Kelembaban udara
Kelembaban udara dalam udara bertekanan pada waktu suhu menurun dan tekanan meningkat dipisahkan sebagai tetesan air (air embun).
Pemecahan :
• penggunaan filter-filter untuk pemisahan air embun (dan juga untuk penyaring kotoran-kotoran).

e. Bahaya pembekuan
Pada waktu pemuaian tiba-tiba (dibelakang pemakai udara bertekanan) dan penurunan suhu yang bertalian dengan pemuaian tiba-tiba ini, dapat terjadi pembentukan es.
Pemecahan :
• Batasi pemuaian udara bertekanan dalam perkakas-perkakas pneumatik.
• Biarkan udara memuai sepenuhnya pada saat diadakan peniupan ke luar.

f. Kehilangan energi dalam bentuk kalor.
Energi kompresi adiabatik dibuang dalam bentuk kalor dalam pendingin antara dan akhir. Kalor ini hilang sama sekali dan kerugian ini hampir tidak dapat dikurangi.

g. Pelumasan udara bertekanan
Oleh karena tidak adanya sistem pelumasan untuk bagian-bagian yang bergerak, maka bahan pelumas ini dimasukkan bersamaan dengan udara yang mengalir, untuk itu bahan pelumas harus dikabutkan dalam udara bertekanan.

h. Gaya tekan terbatas
1). Dengan udara bertekanan hanya dapat dibangkitkan gaya yang terbatas saja. Untuk gaya yang besar, pada tekanan jaringan normal dibutuhkan diameter piston yang besar.
2). Penyerapan energi pada tekanan-tekanan kejutan hidrolik dapat memberi jalan keluar.

i. Ketidakteraturan
Suatu gerakan teratur hampir tidak dapat diwujudkan :
1). Pada pembebanan berganti-ganti
2). Pada kecepatan-kecepatan kecil (kurang dari 0,25 cm/det) dapat timbul ‘stick-slip effect’.

j. Tidak ada sinkronisasi
Menjalankan dua silinder atau lebih paralel sangat sulit dilakukan.

k. Biaya energi tinggi
Biaya produksi udara bertekanan adalah tinggi. Oleh karena itu untuk produksi dan distribusi dibutuhkan peralatan-peralatan khusus. Setidak-tidaknya biaya ini lebih tinggi dibandingkan dengan penggerak elektrik.
Perbandingan biaya ( tergantung dari cara penggerak ) :
• Elektrik : Pneumatik = 1 : 10 (sampai 12)
• Elektrik : Hidrolik = 1 : 8 (sampai 10)
• Elektrik : Tangan = 1 : 400 (sampai 500)

1.4 Pemecahan Kerugian Pneumatik
Pada umumnya, hal-hal yang merugikan dapat dikurangi atau dikompensasi dengan :
a. Peragaman yang cocok dari komponen-komponen maupun alat pneumatik.
b. Pemilihan sebaik mungkin sistem pneumatik yang dibutuhkan.
c. Kombinasi yang sesuai dengan tujuannya dari berbagai sistem penggerakan dan pengendalian (elektrik, pneumatik dan hidrolik).
(Sumber Drs. Sudaryono, VEDC Malang)
(InsyaAllah DIsambung lagi nanti. mohon maaf jika ada kesalahan)

Dasar-Dasar Pneumatik

GambarPneumatik merupakan teori atau pengetahuan tentang udara yang bergerak, keadaan-keadaan keseimbangan udara dan syarat-syarat keseimbangan. Perkataan pneumatik berasal bahasa Yunani “ pneuma “ yang berarti “napas” atau “udara”. Jadi pneumatik berarti terisi udara atau digerakkan oleh udara mampat. Pneumatik merupakan cabang teori aliran atau mekanika fluida dan tidak hanya meliputi penelitian aliran-aliran udara melalui suatu sistem saluran, yang terdiri atas pipa-pipa, selang-selang, gawai dan sebagainya, tetapi juga aksi dan penggunaan udara mampat.

Pneumatik menggunakan hukum-hukum aeromekanika, yang menentukan keadaan keseimbangan gas dan uap (khususnya udara atmosfir) dengan adanya gaya-gaya luar (aerostatika) dan teori aliran (aerodinamika). Pneumatik dalam pelaksanaan teknik udara mampat dalam industri merupakan ilmu pengetahuan dari semua proses mekanik dimana udara memindahkan suatu gaya atau gerakan. Jadi pneumatik meliputi semua komponen mesin atau peralatan, dalam mana terjadi proses-proses pneumatik. Dalam bidang kejuruan teknik pneumatik dalam pengertian yang lebih sempit lagi adalah teknik udara mampat (udara bertekanan).

Gambar

Komponen-komponen Pneumatik

Komponen pneumatik beroperasi pada tekanan 8 s.d. 10 bar, tetapi dalam praktik dianjurkan beroperasi pada tekanan 5 s.d. 6 bar untuk penggunaan yang ekonomis.
Beberapa bidang aplikasi di industri yang menggunakan media pneumatik dalam hal penangan material adalah sebagai berikut :
a. Pencekaman benda kerja
b. Penggeseran benda kerja
c. Pengaturan posisi benda kerja
d. Pengaturan arah benda kerja

Penerapan pneumatik secara umum :
a. Pengemasan (packaging)
b. Pemakanan (feeding)
c. Pengukuran (metering)
d. Pengaturan buka dan tutup (door or chute control)
e. Pemindahan material (transfer of materials)
f. Pemutaran dan pembalikan benda kerja (turning and inverting of parts)
g. Pemilahan bahan (sorting of parts)
h. Penyusunan benda kerja (stacking of components)
i. Pencetakan benda kerja (stamping and embosing of components)

Susunan sistem pneumatik adalah sebagai berikut :
a. Catu daya (energi supply)
b. Elemen masukan (sensors)
c. Elemen pengolah (processors)
d. Elemen kerja (actuators)

1.1 Alasan Pemakaian Pneumatik
Persaingan antara peralatan pneumatik dengan peralatan mekanik, hidrolik atau elektrik makin menjadi besar. Dalam penggunaannya sistem pneumatik diutamakan karena beberapa hal yaitu :
a. paling banyak dipertimbangkan untuk beberapa mekanisasi,
b. dapat bertahan lebih baik terhadap keadaan-keadaan tertentu
Sering kali suatu proses tertentu dengan cara pneumatik, berjalan lebih rapi (efisien) dibandingkan dengan cara lainnya. Contoh :
1). Palu-palu bor dan keling pneumatik adalah jauh lebih baik dibandingkan dengan perkakas-perkakas elektrik serupa karena lebih ringan, lebih ada kepastian kerja dan lebih sederhana dalam pelayanan.
2). Pesawat-pesawat pneumatik telah mengambil suatu kedudukan monopoli yang penting pada :
a). rem-rem udara bertekanan untuk mobil angkutan dan gerbong-gerbong kereta api, alat-alat angkat dan alat-alat angkut.
b). pistol-pistol ( alat cat semprot, mesin-mesin peniup kaca, berbagai jenis penyejukan udara, kepala-kepala asah kecepatan tinggi ).

Udara bertekanan memiliki banyak sekali keuntungan, tetapi dengan sendirinya juga terdapat segi-segi yang merugikan atau lebih baik pembatasan-pembatasan pada penggunaannya. Hal-hal yang menguntungkan dari pneumatik pada mekanisasi yang sesuai dengan tujuan sudah diakui oleh cabang-cabang industri yang lebih banyak lagi. Pneumatik mulai digunakan untuk pengendalian maupun penggerakan mesin-mesin dan alat-alat.

1.2 Keuntungan Pemakaian Pneumatik
a. Merupakan media/fluida kerja yang mudah didapat dan mudah diangkut :
1). Udara dimana saja tersedia dalam jumlah yang tak terhingga.
2). Saluran-saluran balik tidak diperlukan karena udara bekas dapat dibuang bebas ke atmosfir, sistem elektrik dan hidrolik memerlukan saluran balik.
3). Udara bertekanan dapat diangkut dengan mudah melalui saluran-saluran dengan jarak yang besar, jadi pembuangan udara bertekanan dapat dipusatkan dan menggunakan saluran melingkar semua pemakai dalam satu perusahaan dapat dilayani udara bertekanan dengan tekanan tetap dan sama besarnya. Melalui saluran-saluran cabang dan pipa-pipa selang, energi udara bertekanan dapat disediakan dimana saja dalam perusahaan.

b. Dapat disimpan dengan mudah :
1). Sumber udara bertekanan ( kompresor ) hanya menyerahkan udara bertekanan kalau udara bertekanan ini memang digunakan. Jadi kompresor tidak perlu bekerja seperti halnya pada pompa peralatan hidrolik.
2). Pengangkutan ke dan penyimpanan dalam tangki-tangki penampung juga dimungkinkan.
3). Suatu daur kerja yang telah dimulai selalu dapat diselesaikan, demikian pula kalau penyediaan listrik tiba-tiba dihentikan.

c. Bersih dan kering :
1). Udara bertekanan adalah bersih. Kalau ada kebocoran pada saluran pipa, benda-benda kerja maupun bahan-bahan disekelilingnya tidak akan menjadi kotor.
2). Udara bertekanan adalah kering. Bila terdapat kerusakan pipa-pipa tidak akan ada pengotoran-pengotoran, bintik minyak dansebagainya.
3). Dalam industri pangan , kayu , kulit dan tenun serta pada mesin-mesin pengepakan hal yang memang penting sekali adalah bahwa peralatan tetap bersih selama bekerja.
Sistem pneumatik yang bocor bekerja merugikan dilihat dari sudut ekonomis, tetapi dalam keadaan darurat pekerjaan tetap dapat berlangsung. Tidak terdapat minyak bocoran yang mengganggu seperti pada sistem hidrolik.

d. Tidak peka terhadap suhu
1). Udara bersih ( tanpa uap air ) dapat digunakan sepenuhnya pada suhu-suhu yang tinggi atau pada nilai-nilai yang rendah, jauh di bawah titik beku ( masing-masing panas atau dingin ).
2). Udara bertekanan juga dapat digunakan pada tempat-tempat yang sangat panas, misalnya untuk pelayanan tempa tekan, pintu-pintu dapur pijar, dapur pengerasan atau dapur lumer.
3). Peralatan-peralatan atau saluran-saluran pipa dapat digunakan secara aman dalam lingkungan yang panas sekali, misalnya pada industri-industri baja atau bengkel-bengkel tuang (cor).

e. Aman terhadap kebakaran dan ledakan
1). Keamanan kerja serta produksi besar dari udara bertekanan tidak mengandung bahaya kebakaran maupun ledakan.
2). Dalam ruang-ruang dengan resiko timbulnya kebakaran atau ledakan atau gas-gas yang dapat meledak dapat dibebaskan, alat-alat pneumatik dapat digunakan tanpa dibutuhkan pengamanan yang mahal dan luas. Dalam ruang seperti itu kendali elektrik dalam banyak hal tidak diinginkan.

f. Tidak diperlukan pendinginan fluida kerja
1). Pembawa energi (udara bertekanan) tidak perlu diganti sehingga untuk ini tidak dibutuhkan biaya. Minyak setidak-tidaknya harus diganti setelah 100 sampai 125 jam kerja.

g. Rasional (menguntungkan)
1). Pneumatik adalah 40 sampai 50 kali lebih murah daripada tenaga otot. Hal ini sangat penting pada mekanisasi dan otomatisasi produksi.
2). Komponen-komponen untuk peralatan pneumatik tanpa pengecualian adalah lebih murah jika dibandingkan dengan komponen-komponen peralatan hidrolik.

h. Kesederhanaan (mudah pemeliharaan)
1). Karena konstruksi sederhana, peralatan-peralatan udara bertekanan hampir tidak peka gangguan.
2). Gerakan-gerakan lurus dilaksanakan secara sederhana tanpa komponen mekanik, seperti tuas-tuas, eksentrik, cakera bubungan, pegas, poros sekerup dan roda gigi.
3). Konstruksinya yang sederhana menyebabkan waktu montase (pemasangan) menjadi singkat, kerusakan-kerusakan seringkali dapat direparasi sendiri, yaitu oleh ahli teknik, montir atau operator setempat.
4). Komponen-komponennya dengan mudah dapat dipasang dan setelah dibuka dapat digunakan kembali untuk penggunaan-penggunaan lainnya.

i. Sifat dapat bergerak
1). Selang-selang elastik memberi kebebasan pindah yang besar sekali dari komponen pneumatik ini.

j. Aman
1). Sama sekali tidak ada bahaya dalam hubungan penggunaan pneumatik, juga tidak jika digunakan dalam ruang-ruang lembab atau di udara luar. Pada alat-alat elektrik ada bahaya hubungan singkat.

k. Dapat dibebani lebih ( tahan pembebanan lebih )
Alat-alat udara bertekanan dan komponen-komponen berfungsi dapat ditahan sedemikian rupa hingga berhenti. Dengan cara ini komponen-komponen akan aman terhadap pembebanan lebih. Komponen-komponen ini juga dapat direm sampai keadaan berhenti tanpa kerugian.
1). Pada pembebanan lebih alat-alat udara bertekanan memang akan berhenti, tetapi tidak akan mengalami kerusakan. Alat-alat listrik terbakar pada pembebanan lebih.
2). Suatu jaringan udara bertekanan dapat diberi beban lebih tanpa rusak.
3). Silinder-silinder gaya tak peka pembebanan lebih dan dengan menggunakan katup-katup khusus maka kecepatan torak dapat disetel tanpa bertingkat.

l. Jaminan bekerja besar
Jaminan bekerja besar dapat diperoleh karena :
1). Peralatan serta komponen bangunannya sangat tahan aus.
2). Peralatan serta komponen pada suhu yang relatif tinggi dapat digunakan sepenuhnya dan tetap demikian.
3). Peralatan pada timbulnya naik turun suhu yang singkat tetap dapat berfungsi.
4). Kebocoran-kebocoran yang mungkin ada tidak mempengaruhi ketentuan bekerjanya suatu instalasi.

m. Biaya pemasangan murah
1). Mengembalikan udara bertekanan yang telah digunakan ke sumbernya (kompresor) tidak perlu dilakukan. Udara bekas dengan segera mengalir keluar ke atmosfir, sehingga tidak diperlukan saluran-saluran balik, hanya saluran masuk saja.
2). Suatu peralatan udara bertekanan dengan kapasitas yang tepat, dapat melayani semua pemakai dalam satu industri. Sebaliknya, pengendalian-pengendalian hidrolik memerlukan sumber energi untuk setiap instalasi tersendiri (motor dan pompa).

n. Pengawasan (kontrol)
1). Pengawasan tekanan kerja dan gaya-gaya atas komponen udara bertekanan yang berfungsi dengan mudah dapat dilaksanakan dengan pengukur-pengukur tekanan (manometer).

o. Fluida kerja cepat
1). Kecepatan-kecepatan udara yang sangat tinggi menjamin bekerjanya elemen-elemen pneumatik dengan cepat. Oleh sebab itu waktu menghidupkan adalah singkat dan perubahan energi menjadi kerja berjalan cepat.
2). Dengan udara mampat orang dapat melaksanakan jumlah perputaran yang tinggi ( Motor Udara ) dan kecepatan-kecepatan piston besar (silinder-silinder kerja ).
3). Udara bertekanan dapat mencapai kecepatan alir sampai 1000 m/min (dibandingkan dengan energi hidrolik sampai 180 m/min ).
4). Dalam silinder pneumatik kecepatan silinder dari 1 sampai 2 m/detik mungkin saja ( dalam pelaksanaan khusus malah sampai 15 m/detik ).
5). Kecepatan sinyal-sinyal kendali pada umumnya terletak antara 40 dan 70 m/detik (2400 sampai 4200 m/min)

p. Dapat diatur tanpa bertingkat
1). Dengan katup pengatur aliran, kecepatan dan gaya dapat diatur tanpa bertingkat mulai dari suatu nilai minimum (ditentukan oleh besarnya silinder) sampai maksimum (tergantung katup pengatur yang digunakan).
2). Tekanan udara dengan sederhana dan kalau dibutuhkan dalam keadaan sedang bekerja dapat disesuaikan dengan keadaan.
3). Beda perkakas rentang tenaga jepitnya dapat disetel dengan memvariasikan tekanan udara tanpa bertingkat dari 0 sampai 6 bar.
4). Tumpuan-tumpuan dapat disetel guna mengatur panjang langkah silinder kerja yang dapat disetel terus-menerus (panjang langkah ini dapat bervariasi sembarang antara kedua kedudukan akhirnya).
5). Perkakas-perkakas pneumatik yang berputar dapat diatur jumlah putaran dan momen putarnya tanpa bertingkat.

q. Ringan sekali
Berat alat-alat pneumatik jauh lebih kecil daripada mesin yang digerakkan elektrik dan perkakas-perkakas konstruksi elektrik (hal ini sangat penting pada perkakas tangan atau perkakas tumbuk). Perbandingan berat (dengan daya yang sama) antara :
• motor pneumatik : motor elektrik = 1 : 8 (sampai 10)
• motor pneumatik : motor frekuensi tinggi = 1 : 3 (sampai 4)

r. Kemungkinan penggunaan lagi (ulang)
Komponen-komponen pneumatik dapat digunakan lagi, misalnya kalau komponen-komponen ini tidak dibutuhkan lagi dalam mesin tua.
r. Konstruksi kokoh
Pada umumnya komponen pneumatik ini dikonstruksikan secara kompak dan kokoh, dan oleh karena itu hampir tidak peka terhadap gangguan dan tahan terhadap perlakuan-perlakuan kasar.

s. Fluida kerja murah
Pengangkut energi (udara) adalah gratis dan dapat diperoleh senantiasa dan dimana saja. Yang harus dipilih adalah suatu kompresor yang tepat untuk keperluan tertentu; jika seandainya kompresor yang dipilih tidak memenuhi syarat, maka segala keuntungan pneumatik tidak ada lagi.

1.3 Kerugian / terbatasnya Pneumatik
a. Ketermampatan (udara).
Udara dapat dimampatkan. Oleh sebab itu adalah tidak mungkin untuk mewujudkan kecepatan-kecepatan piston dan pengisian yang perlahan-lahan dan tetap, tergantung dari bebannya.
Pemecahan :
• kesulitan ini seringkali diberikan dengan mengikutsertakan elemen hidrolik dalam hubungan bersangkutan, tertama pada pengerjaan-pengerjaan cermat ( bor, bubut atau frais ) hal ini merupakan suatu alat bantu yang seringkali digunakan.

b. Gangguan Suara (Bising)
Udara yang ditiup ke luar menyebabkan kebisingan (desisan) mengalir ke luar, terutama dalam ruang-ruang kerja sangat mengganggu.
Pemecahan :
• dengan memberi peredam suara (silincer)

c. Kegerbakan (volatile)
Udara bertekanan sangat gerbak (volatile). Terutama dalam jaringan-jaringan udara bertekanan yang besar dan luas dapat terjadi kebocoran-kebocoran yang banyak, sehingga udara bertekanan mengalir keluar. Oleh karena itu pemakaian udara bertekanan dapat meningkat secara luar biasa dan karenanya harga pokok energi “berguna” sangat tinggi.
Pemecahan :
• dapat dilakukan dengan menggunakan perapat-perapat berkualitas tinggi.

d. Kelembaban udara
Kelembaban udara dalam udara bertekanan pada waktu suhu menurun dan tekanan meningkat dipisahkan sebagai tetesan air (air embun).
Pemecahan :
• penggunaan filter-filter untuk pemisahan air embun (dan juga untuk penyaring kotoran-kotoran).

e. Bahaya pembekuan
Pada waktu pemuaian tiba-tiba (dibelakang pemakai udara bertekanan) dan penurunan suhu yang bertalian dengan pemuaian tiba-tiba ini, dapat terjadi pembentukan es.
Pemecahan :
• Batasi pemuaian udara bertekanan dalam perkakas-perkakas pneumatik.
• Biarkan udara memuai sepenuhnya pada saat diadakan peniupan ke luar.

f. Kehilangan energi dalam bentuk kalor.
Energi kompresi adiabatik dibuang dalam bentuk kalor dalam pendingin antara dan akhir. Kalor ini hilang sama sekali dan kerugian ini hampir tidak dapat dikurangi.

g. Pelumasan udara bertekanan
Oleh karena tidak adanya sistem pelumasan untuk bagian-bagian yang bergerak, maka bahan pelumas ini dimasukkan bersamaan dengan udara yang mengalir, untuk itu bahan pelumas harus dikabutkan dalam udara bertekanan.

h. Gaya tekan terbatas
1). Dengan udara bertekanan hanya dapat dibangkitkan gaya yang terbatas saja. Untuk gaya yang besar, pada tekanan jaringan normal dibutuhkan diameter piston yang besar.
2). Penyerapan energi pada tekanan-tekanan kejutan hidrolik dapat memberi jalan keluar.

i. Ketidakteraturan
Suatu gerakan teratur hampir tidak dapat diwujudkan :
1). Pada pembebanan berganti-ganti
2). Pada kecepatan-kecepatan kecil (kurang dari 0,25 cm/det) dapat timbul ‘stick-slip effect’.

j. Tidak ada sinkronisasi
Menjalankan dua silinder atau lebih paralel sangat sulit dilakukan.

k. Biaya energi tinggi
Biaya produksi udara bertekanan adalah tinggi. Oleh karena itu untuk produksi dan distribusi dibutuhkan peralatan-peralatan khusus. Setidak-tidaknya biaya ini lebih tinggi dibandingkan dengan penggerak elektrik.
Perbandingan biaya ( tergantung dari cara penggerak ) :
• Elektrik : Pneumatik = 1 : 10 (sampai 12)
• Elektrik : Hidrolik = 1 : 8 (sampai 10)
• Elektrik : Tangan = 1 : 400 (sampai 500)

1.4 Pemecahan Kerugian Pneumatik
Pada umumnya, hal-hal yang merugikan dapat dikurangi atau dikompensasi dengan :
a. Peragaman yang cocok dari komponen-komponen maupun alat pneumatik.
b. Pemilihan sebaik mungkin sistem pneumatik yang dibutuhkan.
c. Kombinasi yang sesuai dengan tujuannya dari berbagai sistem penggerakan dan pengendalian (elektrik, pneumatik dan hidrolik).
(Sumber Drs. Sudaryono, VEDC Malang)
(InsyaAllah DIsambung lagi nanti. mohon maaf jika ada kesalahan)

Dasar-Dasar PLC

Programmable Logic Controller (PLC) adalah sebuah rangkaian elektronik yang dapat mengerjakan berbagai fungsi-fungsi kontrol pada level-level yang kompleks. PLC dapat diprogram, dikontrol, dan dioperasikan oleh operator yang tidak berpengalaman dalam mengoperasikan komputer. PLC umumnya digambarkan dengan garis dan peralatan pada suatu diagram ladder. Hasil gambar tersebut pada komputer menggambarkan hubungan yang diperlukan untuk suatu proses. PLC akan mengoperasikan semua siatem yang mempunyai output apakah harus ON atau OFF. Dapat juga dioperasikan suatu sistem dengan output yang bervariasi.

PLC pada awalnya sebagai alat elektronik untuk mengganti panel relay. Pada saat itu PLC hanya bekerja untuk kondisi ON-OFF untuk pengendalian motor, solenoid, dan actuator. Alat ini mampu mengambil keputusan yang lebih baik dibandingkan relay biasa. PLC pertama-tama banyak digunakan pada bagian otomotif. Sebelum adanya PLC, sudah banyak peralatan kontrol sequence, ketika relay muncul, panel kontrol dengan relay menjadi kontrol sequence yang utama. Ketika transistor muncul, solid state relay yang diterapkan seperti untuk kontrol dengan kecepatan tinggi.

Pada tahun 1978, penemuan chip mikroprosessor menaikkan kemampuan komputer untuk segala jenis sistem otomatisasi dengan harga yang terjangkau. Robotika, peralatan otomatis dan komputer dari berbagai tipe, termasuk PLC berkembang dengan pesat. Program PLC makin mudah untuk dimengerti oleh banyak orang.

Pada awal tahun 1980 PLC makin banyak digunakan. Beberapa perusahaan elektronik dan komputer membuat PLC dalam volume yang besar. Meskipun industri peralatan mesin CNC telah digunakan beberapa waktu yang lalu, PLC tetap digunakan. PLC juga digunakan untuk sistem otomatisasi building dan juga security control system.
Sekarang sistem kontrol sudah meluas hingga keseluruh pabrik dan sistem kontrol total dikombinasikan dengan kontrol feedback, pemrosesan data, dan sistem monitor terpusat. Saat ini PLC sudah menjadi alat yang cerdas, yang merupakan kebutuhan utama di industri modern. PLC modern juga sebagai alat yang dapat mengakuasi data dan menyimpannya.

PLC sebenarnya adalah suatu sistem elektronika digital yang dirancang agar dapat mengendalikan mesin dengan proses mengimplementasikan fungsi nalar kendali sekuensial, operasi pewaktuan (timing), pencacahan (counting), dan aritmatika.
PLC tidak lain adalah komputer digital sehingga mempunyai processor, unit memori, unit kontrol, dan unit I/O, PLC berbeda dengan komputer dalam beberapa hal, yaitu :
• PLC dirancang untuk berada di lingkungan industri yang mungkin banyak debu, panas, guncangan, dan sebagainya.
• PLC harus dapat dioperasikan serta dirawat dengan mudah oleh teknisi pabrik.
• PLC sebagian besar tidak dilengkapi dengan monitor, tetapi dilengkapi dengan peripheral port yang berfungsi untuk memasukkan program sekaligus memonitor data atau program.

Sebagian besar PLC dapat melakukan operasi sebagai berikut :
1. Relay Logic
2. Penguncian ( Locking )
3. Pencacahan ( Counting )
4. Penambahan
5. Pengurangan
6. Pewaktuan ( Timing )
7. Kendali PID
8. Operasi BCD
9. Manipulasi Data
10. Pembandingan
11. Pergeseran

Kehandalan PLC (Programmable Logic Controller)

– Flexibility
Pada awalnya, setiap mesin produksi yang dikendalikan secara elektronik memerlukan masing-masing kendali, misalnya 12 mesin memerlukan 12 kontroler. Sekarang dengan menggunakan satu model dari PLC dapat mengendalikan salah satu dari 12 mesin tersebut. Tiap mesin dikendalikan dengan masing-masing program sendiri.

– Perubahan implementasi dan koreksi error
Dengan menggunakan tipe relay yang terhubung pada panel, perubahan program akan memerlukan waktu untuk menghubungkan kembali panel dan peralatan. Sedangkan dengan menggunakan PLC untuk melakukan perubahan program, tidak memerlukan waktu yang lama yaitu dengan cara merubahnya pada sebuah software. Dan jika kesalahan program terjadi, maka kesalahan dapat langsung dideteksi keberadaannya dengan memonitor secara langsung. Perubahannya sangat mudah, hanya mengubah diagram laddernya.

– Harga yang rendah
PLC lebih sederhana dalam bentuk, ukuran dan peralatan lain yang mendukungnya, sehingga harga dapat dijangkau. Saat ini dapat dibeli PLC berikut timer, counter, dan input analog dalam satu kemasan CPU. PLC mudah di dapat dan kini sudah banyak beredar di pasaran dengan bermacam-macam merk dan tipe.

– Jumlah kontak yang banyak
PLC memiliki jumlah kontak yang banyak untuk tiap koil yang tersedia. Misal panel yang menghubungkan relay mempunyai 5 kontak dan semua digunakan sementara pada perubahan desain diperlukan 4 kontak lagi yang berarti diperlukan penambahan satu buah relay lagi. Ini berarti diperlukan waktu untuk melakukan instalasinya. Dengan menggunakan PLC, hanya diperlukan pengetikan untuk membuat 4 buah kontak lagi. Ratusan kontak dapat digunakan dari satu buah relay, jika memori pada komputer masih memungkinkan.

– Memonitor hasil
Rangkaian program PLC dapat dicoba dahulu, ditest, diteliti dan dimodifikasi pada kantor atau laboratorium, sehingga efisiensi waktu dapat dicapai. Untuk menguji program PLC tidak harus diinstalasikan dahulu ke alat yang hendak dijalankan, tetapi dapat dilihat langsung pada CPU PLC atau dilihat pada software pendukungnya.

– Observasi visual
Operasi dari rangkaian PLC dapat dilihat selama dioperasikan secara langsung melalui layar CRT. Jika ada kesalahan operasi maupun kesalahan yang lain dapat langsung diketahui. Jalur logika akan menyala pada layar sehingga perbaikan dapat lebih cepat dilakukan melalui observasi visual. Bahkan beberapa PLC dapat memberikan pesan jika terjadi kesalahan.

– Kecepatan operasi
Kecepatan operasi dari PLC melebihi kecepatan operasi daripada relay pada saat bekerja yaitu dalam beberapa mikro detik. Sehingga dapat menentukan kecepatan output dari alat yang digunakan.

– Metode bolean atau ladder
Program PLC dapat dilakukan dengan diagram ladder oleh para teknisi atau juga menggunakan sistem bolean atau digital bagi para pemrogram PLC yang lebih mudah dan dapat disimulasikan pada software pendukungnya.

– Reliability
Peralatan solid state umumnya lebih tahan dibandingkan dengan relay atau timer mekanik. PLC mampu bekerja pada kondisi lingkungan yang berat, misalnya goncangan, debu, suhu yang tinggi, dan sebagainya.

– Penyederhanaan pemesanan komponen
PLC adalah satu peralatan dengan satu waktu pengiriman. Jika satu PLC tiba, maka semua relay, counter, dan komponen lainnya juga tiba. Jika mendesain panel relay sebanyak 10 relay, maka diperlukan 10 penyalur yang berbeda pula waktu pengirimannya, sehingga jika lupa memesan satu relay akan berakibat tertundanya pengerjaan suatu panel.

– Dokumentasi
Mencetak rangkaian PLC dapat dilakukan segera secara nyata sebagian atau keseluruhan rangkaian tanpa perlu melihat pada blueprint yang belum tentu up to date, dan juga tidak perlu memeriksa jalur kabel dengan rangkaian.

-nKeamanan
Program PLC tidak dapat diubah oleh sembarang orang dan dapat dibuatkan password. Sedangkan panel relay biasa memungkinkan terjadinya perubahan yang sulit untuk dideteksi.

– Memudahkan perubahan dengan pemrograman ulang.
PLC dapat dengan cepat diprogram ulang, hal ini memungkinkan untuk mencampur proses produksi, sementara produksi lainnya sedang berjalan.

Disamping beberapa kehandalan di atas, tidak bisa dipungkiri bahwa PLC juga mempunyai beberapa kelemahan antara lain :
– Teknologi baru
Sulit untuk mengubah pola pikir beberapa personil yang telah lama menggunakan konsep relay untuk berubah kekonsep PLC komputer.

– Aplikasi program yang tetap
Beberapa aplikasi dari proses produksi merupakan aplikasi yang tidak akan berubah selamanya sehingga keunggulan dari pada PLC untuk mengubah program menjadi tidak berguna.

– Kondisi lingkungan
Lingkungan proses tertentu seperti panas yang tinggi dan getaran ,interferensi dengan peralatan listrik lain membuat keterbatasan pemakaian PLC.

– Pengoperasian yang aman
Pada penggunaan sistem relay, jika sumber daya padam akan langsung mematikan seluruh rangkaian dan tidak secara otomatis bekerja kembali PLC akan langsung menjalankan proses yang di program, namun hal ini tergantung dari program yang dibuat.

– Operasi pada rangkaian yang tetap
Jika suatu rangkaian operasi tidak pernah diubah, seperti misalnya drum mekanik , lebih murah jika tetap menggunakan konsep relay dari pada menggunakan PLC.

Keunggulan PLC dibanding Sistem Konvensional
Salah satu keunggulan PLC dibanding sistem konvensional kontrol panel adalah sebagai berikut :
• Pada Progammable Logic Controller :
1. Pengawatan lebih sedikit.
2. Perawatan relatif mudah .
3. Pelacakan sistem lebih sedarhana.
4. Konsumsi daya relatif rendah.
5. Dokumentasi gambar lebih sederhana dan lebih mudah dimengerti.
6. Modifikasi sistem lebih sederhana dan cepat.

• Pada Sistem Konvensional Kontrol Panel:
1. Pengawatan lebih kompleks.
2. Perawatan membutuhkan waktu yang lama.
3. Pelacakan kesalahan membutuhkan waktu yang lama.
4. Konsumsi daya yang relatif tinggi.
5. Dokumentasi gambar lebih banyak.
6. Modifikasi sistem membutuhkan waktu yang lama.

Hal-hal yang dapat dikerjakan oleh PLC
Sebagai kontrol urutan mempunyai fungsi:
1. Pengganti relay kontrol logika konvensional.
2. Pewaktu/pencacah (Timer / counter).
3. Pengganti pengontrol PCB card.
4. Mesin kontrol ( auto / semi auto/manual ).

Sebagai kontrol yang canggih mempunyai fungsi:
1. Operasi aritmatika.
2. Penanganan informasi.
3. Kontrol analog ( suhu, tekanan, dan lain-lain ).
4. PID ( Proporsional-Integral-Diferensial).
5. Kontrol motor servo.
6. Kontrol motor stepper.

Sebagai kontrol pengawasan mempunyai fungsi:
1. Proses monitor dan alarm.
2. Monitor dan diagnosa kesalahan.
3. Antarmuka dengan komputer (RS- 23C/ RS-422).
4. Antarmuka printer / ASCII.
5. Jaringan kerja otomatisasi pabrik.
6. Local Area Network.
7. Wibe Area Network.
8. FMS (Flexible Manufacturing System), CIM ( Computer Integrated Manufacturing ), FA ( factory automation ).

Konfigurasi Programmable Logic Controller

PLC mempunyai konfigurasi yang terdiri dari 6 bagian utama yaitu:
– Unit Power Supply
Unit ini berfungsi untuk memberikan tegangan pada blok CPU PLC, biasanya berupa switching power supply.

– CPU (Central Processing Unit) PLC
Unit merupakan otak dari PLC, disinilah program akan diolah sehingga sistem kontrol yang telah kita desain bekerja seperti yang kita inginkan. CPU PLC sangat bervariasi macamnya tergantung pada masing-masing merk dan tipe PLC-nya.

– Memori unit
RAM : Random Acces Memory
EPROM : Eraseable Progammable Read Only Memory
EEPROM : Electrical Eraseable Programmable Read Only Memory.

– Input unit ( sebagai contoh PLC Omron )
Input digital: Input Point Digital
o DC 24 V input
o DC 5 V input / TTL (Transistor Transistor Logic)
o AC/DC 24 V input
o AC 110 V input
o AC 220 V input

Input analog : Input Point Linear
• 0 – 10 V DC
• -10 V DC – 10 V DC
• 4 – 20 mA DC

– Output unit
Output digital : Output Point Digital 1.
o Relay Output
o AC 110 V output
o AC 220 V output
o DC 24 V output,tipe PNP dan tipe NPN.

Output analog : Output Point Linier
• 0 – 1 V DC
• -10 V DC – 10 V DC
• 4 – 20 mA DC

– Peripheral
Yang termasuk dalam peripheral adalah :
1. SSS (Sysmac Support Software)
2. PROM writer
3. GPC (Graphic Programming Console)
4. FIT (Factory Intelegent Terminal)

Perangkat Keras Programmable Logic Controller
Programmable Logic Controller dapat berarti sebagai alat pengendali logika yang dapat diprogram. PLC ini merupakan perangkat kontrol yang menerima data input dari luar yang ditransfer dalam bentuk keputusan yang bersifat logika dan disimpan dalam memori. PLC mempunyai perangkat keras yang berupa CPU (Central Processing Unit), modul input dan output, memori serta piranti program.
Ketika PLC bekerja , saat itu juga PLC mengakses data input dan output, menjalankan program instruksi, serta menjalankan peralatan eksternal.

Central Processing Unit
Central Processing Unit (CPU) merupakan pusat pengolah dan pengontrol data dari seluruh sistem kerja PLC. Proses yang dilakukan oleh CPU ini antara lain adalah mengontrol semua operasi, mengolah program yang ada dalam memori, serta mengatur komunikasi antara input-output, memori dan CPU melalui sistem BUS. CPU juga berfungsi menjalankan dan mengolah fungsi-fungsi yang diinginkan berdasarkan program yang telah ditentukan.

Memori
Agar PLC dapat bekerja sesuai harapan maka dibutuhkan suatu program untuk menjalankannya. Program tersebut harus disimpan dengan cara tertentu agar PLC dapat mengakses perintah-perintah sesuai yang diinstruksikan. Disamping itu juga diperlukan untuk menyimpan data sementara selama pelaksanaan program.

Model Input Output
Model input output merupakan piranti yang menghubungkan antara PLC dengan peralatan yang dikendalikannya. Sebagai contoh pada PLC OMRON rata-rata mempunyai 16 built-in input yang terpasang pada unit 0 CH ( zero channel ). Namun demikian jumlah ini dapat ditambah dengan memasang unit ekspansi I/O. Model input atau output tambahan ini dapat dipasang secara bebas sesuai dengan kebutuhan.

Programming Console
Perangkat ini merupakan panel pemrograman yang didalamnya terdapat RAM (Random Access Memory) yang berfungsi sebagai tempat penyimpanan semi permanen pada sebuah program yang sedang dibuat atau dimodifikasi. Program yang dituliskan ke dalam console harus dalam bentuk mnemonic. Perangkat ini dapat dihubungkan langsung ke CPU dengan menggunakan kabel ekstention yang dapat dipasang dan dilepas setiap saat. Apabila proses eksekusi program telah melewati satu putaran maka panel (Programming Console) ini dapat dicabut dan dipindahkan ke CPU lain, sedangkan CPU yang pertama tadi masih tetap bisa untuk menjalankan programnya, tetapi harus pada posisi RUN atau MONITOR

Dasar-Dasar PLC

Programmable Logic Controller (PLC) adalah sebuah rangkaian elektronik yang dapat mengerjakan berbagai fungsi-fungsi kontrol pada level-level yang kompleks. PLC dapat diprogram, dikontrol, dan dioperasikan oleh operator yang tidak berpengalaman dalam mengoperasikan komputer. PLC umumnya digambarkan dengan garis dan peralatan pada suatu diagram ladder. Hasil gambar tersebut pada komputer menggambarkan hubungan yang diperlukan untuk suatu proses. PLC akan mengoperasikan semua siatem yang mempunyai output apakah harus ON atau OFF. Dapat juga dioperasikan suatu sistem dengan output yang bervariasi.

PLC pada awalnya sebagai alat elektronik untuk mengganti panel relay. Pada saat itu PLC hanya bekerja untuk kondisi ON-OFF untuk pengendalian motor, solenoid, dan actuator. Alat ini mampu mengambil keputusan yang lebih baik dibandingkan relay biasa. PLC pertama-tama banyak digunakan pada bagian otomotif. Sebelum adanya PLC, sudah banyak peralatan kontrol sequence, ketika relay muncul, panel kontrol dengan relay menjadi kontrol sequence yang utama. Ketika transistor muncul, solid state relay yang diterapkan seperti untuk kontrol dengan kecepatan tinggi.

Pada tahun 1978, penemuan chip mikroprosessor menaikkan kemampuan komputer untuk segala jenis sistem otomatisasi dengan harga yang terjangkau. Robotika, peralatan otomatis dan komputer dari berbagai tipe, termasuk PLC berkembang dengan pesat. Program PLC makin mudah untuk dimengerti oleh banyak orang.

Pada awal tahun 1980 PLC makin banyak digunakan. Beberapa perusahaan elektronik dan komputer membuat PLC dalam volume yang besar. Meskipun industri peralatan mesin CNC telah digunakan beberapa waktu yang lalu, PLC tetap digunakan. PLC juga digunakan untuk sistem otomatisasi building dan juga security control system.
Sekarang sistem kontrol sudah meluas hingga keseluruh pabrik dan sistem kontrol total dikombinasikan dengan kontrol feedback, pemrosesan data, dan sistem monitor terpusat. Saat ini PLC sudah menjadi alat yang cerdas, yang merupakan kebutuhan utama di industri modern. PLC modern juga sebagai alat yang dapat mengakuasi data dan menyimpannya.

PLC sebenarnya adalah suatu sistem elektronika digital yang dirancang agar dapat mengendalikan mesin dengan proses mengimplementasikan fungsi nalar kendali sekuensial, operasi pewaktuan (timing), pencacahan (counting), dan aritmatika.
PLC tidak lain adalah komputer digital sehingga mempunyai processor, unit memori, unit kontrol, dan unit I/O, PLC berbeda dengan komputer dalam beberapa hal, yaitu :
• PLC dirancang untuk berada di lingkungan industri yang mungkin banyak debu, panas, guncangan, dan sebagainya.
• PLC harus dapat dioperasikan serta dirawat dengan mudah oleh teknisi pabrik.
• PLC sebagian besar tidak dilengkapi dengan monitor, tetapi dilengkapi dengan peripheral port yang berfungsi untuk memasukkan program sekaligus memonitor data atau program.

Sebagian besar PLC dapat melakukan operasi sebagai berikut :
1. Relay Logic
2. Penguncian ( Locking )
3. Pencacahan ( Counting )
4. Penambahan
5. Pengurangan
6. Pewaktuan ( Timing )
7. Kendali PID
8. Operasi BCD
9. Manipulasi Data
10. Pembandingan
11. Pergeseran

Kehandalan PLC (Programmable Logic Controller)

– Flexibility
Pada awalnya, setiap mesin produksi yang dikendalikan secara elektronik memerlukan masing-masing kendali, misalnya 12 mesin memerlukan 12 kontroler. Sekarang dengan menggunakan satu model dari PLC dapat mengendalikan salah satu dari 12 mesin tersebut. Tiap mesin dikendalikan dengan masing-masing program sendiri.

– Perubahan implementasi dan koreksi error
Dengan menggunakan tipe relay yang terhubung pada panel, perubahan program akan memerlukan waktu untuk menghubungkan kembali panel dan peralatan. Sedangkan dengan menggunakan PLC untuk melakukan perubahan program, tidak memerlukan waktu yang lama yaitu dengan cara merubahnya pada sebuah software. Dan jika kesalahan program terjadi, maka kesalahan dapat langsung dideteksi keberadaannya dengan memonitor secara langsung. Perubahannya sangat mudah, hanya mengubah diagram laddernya.

– Harga yang rendah
PLC lebih sederhana dalam bentuk, ukuran dan peralatan lain yang mendukungnya, sehingga harga dapat dijangkau. Saat ini dapat dibeli PLC berikut timer, counter, dan input analog dalam satu kemasan CPU. PLC mudah di dapat dan kini sudah banyak beredar di pasaran dengan bermacam-macam merk dan tipe.

– Jumlah kontak yang banyak
PLC memiliki jumlah kontak yang banyak untuk tiap koil yang tersedia. Misal panel yang menghubungkan relay mempunyai 5 kontak dan semua digunakan sementara pada perubahan desain diperlukan 4 kontak lagi yang berarti diperlukan penambahan satu buah relay lagi. Ini berarti diperlukan waktu untuk melakukan instalasinya. Dengan menggunakan PLC, hanya diperlukan pengetikan untuk membuat 4 buah kontak lagi. Ratusan kontak dapat digunakan dari satu buah relay, jika memori pada komputer masih memungkinkan.

– Memonitor hasil
Rangkaian program PLC dapat dicoba dahulu, ditest, diteliti dan dimodifikasi pada kantor atau laboratorium, sehingga efisiensi waktu dapat dicapai. Untuk menguji program PLC tidak harus diinstalasikan dahulu ke alat yang hendak dijalankan, tetapi dapat dilihat langsung pada CPU PLC atau dilihat pada software pendukungnya.

– Observasi visual
Operasi dari rangkaian PLC dapat dilihat selama dioperasikan secara langsung melalui layar CRT. Jika ada kesalahan operasi maupun kesalahan yang lain dapat langsung diketahui. Jalur logika akan menyala pada layar sehingga perbaikan dapat lebih cepat dilakukan melalui observasi visual. Bahkan beberapa PLC dapat memberikan pesan jika terjadi kesalahan.

– Kecepatan operasi
Kecepatan operasi dari PLC melebihi kecepatan operasi daripada relay pada saat bekerja yaitu dalam beberapa mikro detik. Sehingga dapat menentukan kecepatan output dari alat yang digunakan.

– Metode bolean atau ladder
Program PLC dapat dilakukan dengan diagram ladder oleh para teknisi atau juga menggunakan sistem bolean atau digital bagi para pemrogram PLC yang lebih mudah dan dapat disimulasikan pada software pendukungnya.

– Reliability
Peralatan solid state umumnya lebih tahan dibandingkan dengan relay atau timer mekanik. PLC mampu bekerja pada kondisi lingkungan yang berat, misalnya goncangan, debu, suhu yang tinggi, dan sebagainya.

– Penyederhanaan pemesanan komponen
PLC adalah satu peralatan dengan satu waktu pengiriman. Jika satu PLC tiba, maka semua relay, counter, dan komponen lainnya juga tiba. Jika mendesain panel relay sebanyak 10 relay, maka diperlukan 10 penyalur yang berbeda pula waktu pengirimannya, sehingga jika lupa memesan satu relay akan berakibat tertundanya pengerjaan suatu panel.

– Dokumentasi
Mencetak rangkaian PLC dapat dilakukan segera secara nyata sebagian atau keseluruhan rangkaian tanpa perlu melihat pada blueprint yang belum tentu up to date, dan juga tidak perlu memeriksa jalur kabel dengan rangkaian.

-nKeamanan
Program PLC tidak dapat diubah oleh sembarang orang dan dapat dibuatkan password. Sedangkan panel relay biasa memungkinkan terjadinya perubahan yang sulit untuk dideteksi.

– Memudahkan perubahan dengan pemrograman ulang.
PLC dapat dengan cepat diprogram ulang, hal ini memungkinkan untuk mencampur proses produksi, sementara produksi lainnya sedang berjalan.

Disamping beberapa kehandalan di atas, tidak bisa dipungkiri bahwa PLC juga mempunyai beberapa kelemahan antara lain :
– Teknologi baru
Sulit untuk mengubah pola pikir beberapa personil yang telah lama menggunakan konsep relay untuk berubah kekonsep PLC komputer.

– Aplikasi program yang tetap
Beberapa aplikasi dari proses produksi merupakan aplikasi yang tidak akan berubah selamanya sehingga keunggulan dari pada PLC untuk mengubah program menjadi tidak berguna.

– Kondisi lingkungan
Lingkungan proses tertentu seperti panas yang tinggi dan getaran ,interferensi dengan peralatan listrik lain membuat keterbatasan pemakaian PLC.

– Pengoperasian yang aman
Pada penggunaan sistem relay, jika sumber daya padam akan langsung mematikan seluruh rangkaian dan tidak secara otomatis bekerja kembali PLC akan langsung menjalankan proses yang di program, namun hal ini tergantung dari program yang dibuat.

– Operasi pada rangkaian yang tetap
Jika suatu rangkaian operasi tidak pernah diubah, seperti misalnya drum mekanik , lebih murah jika tetap menggunakan konsep relay dari pada menggunakan PLC.

Keunggulan PLC dibanding Sistem Konvensional
Salah satu keunggulan PLC dibanding sistem konvensional kontrol panel adalah sebagai berikut :
• Pada Progammable Logic Controller :
1. Pengawatan lebih sedikit.
2. Perawatan relatif mudah .
3. Pelacakan sistem lebih sedarhana.
4. Konsumsi daya relatif rendah.
5. Dokumentasi gambar lebih sederhana dan lebih mudah dimengerti.
6. Modifikasi sistem lebih sederhana dan cepat.

• Pada Sistem Konvensional Kontrol Panel:
1. Pengawatan lebih kompleks.
2. Perawatan membutuhkan waktu yang lama.
3. Pelacakan kesalahan membutuhkan waktu yang lama.
4. Konsumsi daya yang relatif tinggi.
5. Dokumentasi gambar lebih banyak.
6. Modifikasi sistem membutuhkan waktu yang lama.

Hal-hal yang dapat dikerjakan oleh PLC
Sebagai kontrol urutan mempunyai fungsi:
1. Pengganti relay kontrol logika konvensional.
2. Pewaktu/pencacah (Timer / counter).
3. Pengganti pengontrol PCB card.
4. Mesin kontrol ( auto / semi auto/manual ).

Sebagai kontrol yang canggih mempunyai fungsi:
1. Operasi aritmatika.
2. Penanganan informasi.
3. Kontrol analog ( suhu, tekanan, dan lain-lain ).
4. PID ( Proporsional-Integral-Diferensial).
5. Kontrol motor servo.
6. Kontrol motor stepper.

Sebagai kontrol pengawasan mempunyai fungsi:
1. Proses monitor dan alarm.
2. Monitor dan diagnosa kesalahan.
3. Antarmuka dengan komputer (RS- 23C/ RS-422).
4. Antarmuka printer / ASCII.
5. Jaringan kerja otomatisasi pabrik.
6. Local Area Network.
7. Wibe Area Network.
8. FMS (Flexible Manufacturing System), CIM ( Computer Integrated Manufacturing ), FA ( factory automation ).

Konfigurasi Programmable Logic Controller

PLC mempunyai konfigurasi yang terdiri dari 6 bagian utama yaitu:
– Unit Power Supply
Unit ini berfungsi untuk memberikan tegangan pada blok CPU PLC, biasanya berupa switching power supply.

– CPU (Central Processing Unit) PLC
Unit merupakan otak dari PLC, disinilah program akan diolah sehingga sistem kontrol yang telah kita desain bekerja seperti yang kita inginkan. CPU PLC sangat bervariasi macamnya tergantung pada masing-masing merk dan tipe PLC-nya.

– Memori unit
RAM : Random Acces Memory
EPROM : Eraseable Progammable Read Only Memory
EEPROM : Electrical Eraseable Programmable Read Only Memory.

– Input unit ( sebagai contoh PLC Omron )
Input digital: Input Point Digital
o DC 24 V input
o DC 5 V input / TTL (Transistor Transistor Logic)
o AC/DC 24 V input
o AC 110 V input
o AC 220 V input

Input analog : Input Point Linear
• 0 – 10 V DC
• -10 V DC – 10 V DC
• 4 – 20 mA DC

– Output unit
Output digital : Output Point Digital 1.
o Relay Output
o AC 110 V output
o AC 220 V output
o DC 24 V output,tipe PNP dan tipe NPN.

Output analog : Output Point Linier
• 0 – 1 V DC
• -10 V DC – 10 V DC
• 4 – 20 mA DC

– Peripheral
Yang termasuk dalam peripheral adalah :
1. SSS (Sysmac Support Software)
2. PROM writer
3. GPC (Graphic Programming Console)
4. FIT (Factory Intelegent Terminal)

Perangkat Keras Programmable Logic Controller
Programmable Logic Controller dapat berarti sebagai alat pengendali logika yang dapat diprogram. PLC ini merupakan perangkat kontrol yang menerima data input dari luar yang ditransfer dalam bentuk keputusan yang bersifat logika dan disimpan dalam memori. PLC mempunyai perangkat keras yang berupa CPU (Central Processing Unit), modul input dan output, memori serta piranti program.
Ketika PLC bekerja , saat itu juga PLC mengakses data input dan output, menjalankan program instruksi, serta menjalankan peralatan eksternal.

Central Processing Unit
Central Processing Unit (CPU) merupakan pusat pengolah dan pengontrol data dari seluruh sistem kerja PLC. Proses yang dilakukan oleh CPU ini antara lain adalah mengontrol semua operasi, mengolah program yang ada dalam memori, serta mengatur komunikasi antara input-output, memori dan CPU melalui sistem BUS. CPU juga berfungsi menjalankan dan mengolah fungsi-fungsi yang diinginkan berdasarkan program yang telah ditentukan.

Memori
Agar PLC dapat bekerja sesuai harapan maka dibutuhkan suatu program untuk menjalankannya. Program tersebut harus disimpan dengan cara tertentu agar PLC dapat mengakses perintah-perintah sesuai yang diinstruksikan. Disamping itu juga diperlukan untuk menyimpan data sementara selama pelaksanaan program.

Model Input Output
Model input output merupakan piranti yang menghubungkan antara PLC dengan peralatan yang dikendalikannya. Sebagai contoh pada PLC OMRON rata-rata mempunyai 16 built-in input yang terpasang pada unit 0 CH ( zero channel ). Namun demikian jumlah ini dapat ditambah dengan memasang unit ekspansi I/O. Model input atau output tambahan ini dapat dipasang secara bebas sesuai dengan kebutuhan.

Programming Console
Perangkat ini merupakan panel pemrograman yang didalamnya terdapat RAM (Random Access Memory) yang berfungsi sebagai tempat penyimpanan semi permanen pada sebuah program yang sedang dibuat atau dimodifikasi. Program yang dituliskan ke dalam console harus dalam bentuk mnemonic. Perangkat ini dapat dihubungkan langsung ke CPU dengan menggunakan kabel ekstention yang dapat dipasang dan dilepas setiap saat. Apabila proses eksekusi program telah melewati satu putaran maka panel (Programming Console) ini dapat dicabut dan dipindahkan ke CPU lain, sedangkan CPU yang pertama tadi masih tetap bisa untuk menjalankan programnya, tetapi harus pada posisi RUN atau MONITOR

PENGENALAN PLC

PENGENALAN PLC
a. Tujuan Pemelajaran
Setelah pemelajaran Siswa dapat:
– Mengidentifikasi peralatan sistem kendali PLC
– Menjelaskan cara kerja sistem kendali PLC
– Menjelaskan keunggulan PLC
– Menyebutkan daerah penerapan PLC
– Mengidentifikasi struktur PLC
B Materi..
1. Sistem Kendali
Istilah sistem kendali dalam teknik listrik mempunyai arti suatu
peralatan atau sekelompok peralatan yang digunakan untuk mengatur
fungsi kerja suatu mesin dan memetakan tingkah laku mesin tersebut
sesuai dengan yang dikehendaki. Fungsi kerja mesin tersebut
mencakup antara lain menjalankan (start), mengatur (regulasi), dan
menghentikan suatu proses kerja. Pada umumnya, sistem kendali
merupakan suatu kumpulan peralatan listrik atau elektronik, peralatan
mekanik, dan peralatan lain yang menjamin stabilitas dan transisi
halus serta ketepatan suatu proses kerja.
Sistem kendali mempunyai tiga unsur yaitu input, proses, dan
output.
Input PROSES Output
Gambar 3. Unsur-unsur sistem kendali
Input pada umumnya berupa sinyal dari sebuah transduser, yaitu
alat yang dapat merubah besaran fisik menjadi besaran listrik,
misalnya tombol tekan, saklar batas, termostat, dan lain-lain.
Transduser memberikan informasi mengenai besaran yang diukur,
kemudian informasi ini diproses oleh bagian proses. Bagian proses
dapat berupa rangkaian kendali yang menggunakan peralatan yang
dirangkai secara listrik, atau juga berupa suatu sistem kendali yang
dapat diprogram misalnya PLC.
Pemrosesan informasi (sinyal input) menghasilkan sinyal output
yang selanjutnya digunakan untuk mengaktifkan aktuator (peralatan
output) yang dapat berupa motor listrik, kontaktor, katup selenoid,
lampu, dan sebagainya. Dengan peralatan output, besaran listrik
diubah kembali menjadi besaran fisik.
Sistem kendali dibedakan menjadi dua, yaitu sistem kendali loop
terbuka dan sistem kendali loop tertutup.
a) Sistem Kendali Loop Terbuka
Sistem kendali loop terbuka adalah proses pengendalian di
mana variabel input mempengaruhi output yang dihasilkan.
Gambar 2 menunjukkan diagram blok sistem kendali loop terbuka.
Gambar 4. Diagram blok sistem kendali loop terbuka
Gangguan
Sistem yang
dikendalikan
Peralatan
Kendali
Setting Output
Dari gambar 2 di atas, dapat dipahami bahwa tidak ada
informasi yang diberikan oleh peralatan output kepada bagian
proses sehingga tidak diketahui apakah hasil output sesuai dengan
yang dikehendaki.
b) Sistem Kendali Loop Tertutup
Sistem kendali loop tertutup adalah suatu proses
pengendalian di mana variabel yang dikendalikan (output) disensor
secara kontinyu, kemudian dibandingkan dengan besaran acuan.
Variabel yang dikendalikan dapat berupa hasil pengukuran
temperatur, kelembaban, posisi mekanik, kecepatan putaran, dan
sebagainya. Hasil pengukuran tersebut diumpan-balikkan ke
pembanding (komparator) yang dapat berupa peralatan mekanik,
listrik, elektronik, atau pneumatik. Pembanding membandingkan
sinyal sensor yang berasal dari variabel yang dikendalikan dengan
besaran acuan, dan hasilnya berupa sinyal kesalahan. Selanjutnya,
sinyal kesalahan diumpankan kepada peralatan kendali dan
diproses untuk memperbaiki kesalahan sehingga menghasilkan
output sesuai dengan yang dikehendaki. Dengan kata lain,
kesalahan sama dengan nol.
Gambar 5. Sistem kendali loop tertutup
Gangguan
Sistem yang
dikendalikan
(Proses)
Peralatan
Kendali
Settin Outpu
g
Error
Sensor
Umpan balik
PENGENALAN PLC
Di dalam teknik pengendali dibedakan menjadi dua jenis pengendali :
1. Pengendali terprogram dengan pengawatan:
a. program tetap melalui pengawatan
b. program tidak tetap melalui sakelar pilih
2. Pengendali terprogram yang tersimpan dengan PLC :
a. program tersimpan yang dapat diprogram bebas melalui RAM
(Random Access Memory).
b. program tersimpan yang programnya tidak dapat diubah-ubah melalui
ROM (Read Only Memory), PROM (Programmable Read Only
Memory), EPROM (Eraseable Programmable Read Only Memory).
Pengendali terprogram tetap dengan pengawatan dapat dioperasikan
melalui komponen-komponen relai, magnetik kontaktor dan rangkaian
elektronik. Kontak hubung-tutup dari komponen-komponen tersebut yang
melakukan kerja rangkaian pengendali. Melalui kontak-kontak relai
hubungan seri – paralel rangkaian pengendali dibuat. Fungsi pengendali
dapat dihasilkan melalui pengawatan dari komponen-komponen tersebut.
S1 S2
S3
S4
K1
K1 K1
H1
Elemen
Input
Elemen
Proses
Elemen
Output
Elemen Input :
Tombol tekan S1, S2, S3, S4
Elemen Proses :
Relai K1
Elemen Output :
Lampu H1
Sambungan antara elemenelemen
tersebut melalui
pengawatan.
Gambar 1.1 Pengendali Dengan Pengawatan
Pada pengendali terprogram dengan PLC , fungsi pengendali tidak
tergantung dari pengawatannya. Elemen input ( tombol tekan, sensor ) dan
elemen output dihubungkan ke peralatan PLC. Hubungan elemen input dan
output tidak dilakukan dengan pengawatan tetapi melalui pemrograman
dengan peralatan pemrogram ( Personal Komputer atau peralatan khusus ).
S1 S2
H1
Elemen
Input
Elemen
Proses
Elemen
Output
S3 S4
Elemen Input :
Tombol tekan S1, S2, S3, S4
Elemen Proses :
PLC
Elemen Output :
Lampu H1
Sambungan antara elemenelemen
input dan output tidak
melalui pengawatan, tetapi
melalui program.
Gambar 1.2 Pengendali Dengan PLC
Programmable logic controller (PLC) yang pertama telah dikembangkan
oleh para insinyur General Motor pada tahun 1968, saat mana perusahaan
menemukan jalan buntu untuk mencari pengganti sistem kontrol relai yang
sangat komplek
Sehingga ditetapkan bahwa sistem kontrol baru ini (PLC) harus memenuhi
beberapa persyaratan yang sekaligus merupakan keuntungannya, yaitu
sebagai berikut:
1. Pemrograman sederhana
2. Perubahan program tanpa harus merubah sistem (tidak ada perubahan
instalasi di dalamnya)
3. Lebih kecil, lebih murah dan lebih stabil dari pada hubungan sistem
kontrol relai
4. Sederhana, biaya perawatan murah
Perkembangan berikutnya difokuskan di dalam sistem yang
memungkinkan sambungan dilakukan secara sederhana untuk sinyal-sinyal
biner. Ketentuan-ketentuan seperti bagaimana sinyal-sinyal dihubungkan
adalah menjadi bagian tugas di dalam program kontrol. Dengan sistem
kontrol baru ini menjadi mungkin untuk pertama kali merencanakan sinyalsinyal
pada layar dan menyimpan di dalam penyimpan elektronik.
Sejak itu, tiga dekade telah dilewati, hingga kemajuan yang sangat pesat
telah dilakukan di dalam pengembangan elektronik mikro, seperti halnya
pada PLC. Misalnya, bagaimana mengoptimalkan program tanpa harus
kuawatir dengan kapasitas memori yang terbatas. Sekarang hal ini menjadi
sesuatu yang sangat mudah untuk diatasi.
Selain itu jangkauan fungsinya telah berkembang sangat pesat.
Limabelas tahun yang lalu, visualisasi proses, dan proses analog dengan
menggunakan PLC sebagai kontrol dianggap sebagai suatu impian.
Sekarang, pendukung dari fungsi-fungsi ini telah menyatu dengan banyak
PLC.

Jenis Kompresor

Pada jenis positive-displacement,sejumlah udara atau gas di- trap dalam ruang kompresi dan volumnya secara mekanik menurun, menyebabkan peningkatan tekanan tertentu kemudian dialirkan keluar. Pada kecepatan konstan, aliran udara tetap konstan dengan variasi pada tekanan pengeluaran.

Kompresor dinamik memberikan enegi kecepatan untuk aliran udara atau gas yang kontinyu menggunakan impeller yang berputar pada kecepatan yang sangat tinggi. Energi kecepatan berubah menjadi energi tekanan karena pengaruh impeller dan volute pengeluaran atau diffusers. Pada kompresor jenis dinamik sentrifugal, bentuk dari sudu-sudu impeller menentukan hubungan antara aliran udara dan tekanan (atau head) yang dibangkitkan.

Kompresor reciprocating

Di dalam industri, kompresor reciprocating paling banyak digunakan untuk mengkompresi baik udara maupun refrigerant.Prinsip kerjanya seperti pompa sepeda dengan karakteristik dimana aliran keluar tetap hampir konstan pada kisaran tekanan pengeluaran tertentu. Juga, kapasitas kompresor proporsional langsung terhadap kecepatan. Keluarannya,seperti denyutan.

Kompresor reciprocating tersedia dalam berbagai konfigurasi; terdapat empat jenis yang paling banyak digunakan yaitu horizontal, vertical, horizontal balanceopposed,dan tandem. Jenis kompresor reciprocating vertical digunakan untuk kapasitas antara 50 – 150 cfm. Kompresor horisontal balance opposed digunakan pada kapasitas antara 200 – 5000 cfm untuk desain multitahap dan sampai 10,000 cfm untuk desain satu tahap (Dewan Produktivitas Nasional,1993).

Kompresor udara reciprocating biasanya merupakan aksi tunggal dimana penekanan dilakukan hanya menggunakan satu sisi dari piston. Kompresor yang bekerja menggunakan dua sisi piston disebut sebagai aksi ganda.Sebuah kompresor dianggap sebagai kompresor satu tahap
jika keseluruhan penekanan dilakukan menggunakan satu silinder atau beberapa silinder yang parallel.

Beberapa penerapan dilakukan pada kondisi kompresi satu tahap. Rasio
kompresi yang terlalu besar (tekanan keluar absolut/tekanan masuk absolut) dapat menyebabkan suhu pengeluaran yang berlebihan ataumasalah desain lainnya. Mesin dua tahap yang digunakan untuk tekanan tinggi biasanya mempunyai suhu pengeluaran yang lebih rendah (140 to 160oC), sedangkan pada mesin satu tahap suhu lebih tinggi (205 to 240oC).

gb5-14

Kompresor Dinamis

Kompresor udara sentrifugal (lihat Gambar 5-16)merupakan kompresor dinamis, yang tergantung pada transfer energi dari impeller berputar ke udara. Rotor melakukan pekerjaan ini dengan mengubah momen dan tekanan udara. Momen ini dirubah menjadi tekanan tertentu dengan penurunan udara secara perlahan dalam difuser statis.

Kompresor udara sentrifugal adalah kompresor yang dirancang bebas minyak pelumas. Gir yang dilumasi minyak pelumas terletak terpisah dari udara dengan pemisah yang menggunakan sil pada poros dan ventilasi atmosferis. Sentrifugal merupakan kompresor yang bekerja kontinyu, dengan sedikit bagian yang bergerak; lebih sesuai digunakan pada volum yang besar dimana dibutuhkan bebas minyak pada
udaranya.

Kompresor udara sentrifugal menggunakan pendingin air dan dapat berbentuk paket; khususnya paket yang termasuk aftercooler dan semua control. Kompresor ini dikenal berbeda karakteristiknya jika dibandingkan dengan mesin reciprocating.Perubahan kecil pada rasio kompresi menghasilkan perubahan besar pada hasil kompresi dan efisiensinya. Mesin sentrifugal lebih sesuai diterapkan untuk kapasitas besar diatas 12,000 cfm.

gb5-16

Turbin

Turbin uap zaman Perang Dunia I yang digunakan untuk pendorong kapal.

Turbin adalah sebuah mesin berputar yang mengambil energi dari aliran fluida. Turbin sederhana memiliki satu bagian yang bergerak, “asembli rotor-blade”. Fluida yang bergerak menjadikan baling-baling berputar dan menghasilkan energi untuk menggerakkan rotor. Contoh turbin awal adalah kincir angin dan roda air.

Sebuah turbin yang bekerja terbalik disebut kompresor atau pompa turbo.

Turbin gas, uap dan air biasanya memiliki “casing” sekitar baling-baling yang memfokus dan mengontrol fluid. “Casing” dan baling-baling mungkin memiliki geometri variabel yang dapat membuat operasi efisien untuk beberapa kondisi aliran fluid.

Energi diperoleh dalam bentuk tenaga “shaft” berputar.

Penggunaan turbin

Penggunaan paling umum dari turbin adalah pemroduksian tenaga listrik. Hampir seluruh tenaga listrik diproduksi menggunakan turbin dari jenis tertentu.

Turbin kadangkala merupakan bagian dari mesin yang lebih besar. Sebuah turbin gas, sebagai contoh, dapat menunjuk ke mesin pembakaran dalam yang berisi sebuah turbin, kompresor, “kombustor”, dan alternator.

Turbin dapat memiliki kepadatan tenaga (“power density”) yang luar biasa (berbanding dengan volume dan beratnya). Ini karena kemampuan mereka beroperasi pada kecepatan sangat tinggi. Mesin utama dari Space Shuttle menggunakan turbopumps (mesin yang terdiri dari sebuah pompa yang didorong oleh sebuah mesin turbin) untuk memberikan propellant (oksigen cair dan hidrogen cair) ke ruang pembakaran mesin. Turbopump hidrogen cair ini sedikit lebih besar dari mesin mobil dan memproduksi 70.000 hp (52,2 MW).

Turbin juga merupakan komponen utama mesin jet.

  • Kalender

    • Desember 2016
      S S R K J S M
      « Jul    
       1234
      567891011
      12131415161718
      19202122232425
      262728293031  
  • Cari